MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.

نویسندگان

  • Yafei Li
  • Zhen Zhou
  • Shengbai Zhang
  • Zhongfang Chen
چکیده

First-principles computations were carried out to predict the stability and magnetic and electronic properties of MoS2 nanoribbons with either zigzag- or armchair-terminated edges. Zigzag nanoribbons show the ferromagnetic and metallic behavior, irrespective of the ribbon width and thickness. Armchair nanoribbons are nonmagnetic and semiconducting, and the band gaps converge to a constant value of approximately 0.56 eV as the ribbon width increases. The higher stability of MoS2 nanoribbons, compared with the experimentally available triangular MoS2 nanoclusters, invites the experimental realization of such novel ribbons in true nanoscale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The stability and electronic properties of novel three-dimensional graphene-MoS2 hybrid structure

Three-dimensional (3D) hybrid layered materials receive a lot of attention because of their outstanding intrinsic properties and wide applications. In this work, the stability and electronic structure of three-dimensional graphene-MoS2 (3 DGM) hybrid structures are examined based on first-principle calculations. The results reveal that the 3 DGMs can easily self-assembled by graphene nanosheet ...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequil...

متن کامل

Modulating the phase transition between metallic and semiconducting single-layer MoS2 and WS2 through size effects.

The first-principles calculations are performed to investigate the electronic properties and the atomic mechanism of the single layer MoS2 or WS2 homo-junction structure. The results reveal that both the stability and electronic structure of the homo-junction structure are greatly affected by the type of boundaries, which connect the different phase structures, either the semiconducting hexagon...

متن کامل

Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band

Phosphorene, as a novel two-dimensional material, has attracted a great interest due to its novel electronic structure. The pursuit of controlled magnetism in Phosphorene in particular has been persisting goal in this area. In this paper, an antiferromagnetic insulating state has been found in the zigzag phosphorene nanoribbons (ZPNRs) from the comprehensive density functional theory calculatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 49  شماره 

صفحات  -

تاریخ انتشار 2008